A tentative table of contents:
- Bayesian Decision Theory
- minimum error rate classification
- discriminant functions and decision surfaces
- Parametric models and parameter estimation
- Non-parametric techniques
- K-Nearest neighbors classifier
- Decision trees
- Linear models
- Perceptron
- Logistic regression (Maxent)
- Large margin and kernel methods
- Generative versus discriminative modeling
- Sequence labeling and structure prediction
- Hidden Markov and MaxEnt Markov Models
- Sequence perceptron
- Conditional Random Fields
- Learning + Inference models
No comments:
Post a Comment